Modeling the spatiotemporal abundance of Aedes species and the risk of arboviral infection in Europe and the Americas

Agnese Zardini¹

Francesco Menegale^{1,2}, Andrea Gobbi³, Mattia Manica^{1,4}, Giorgio Guzzetta^{1,4}, Valeria d'Andrea¹, Valentina Marziano¹, Filippo Trentini^{1,5}, Fabrizio Montarsi⁶, Beniamino Caputo⁷, Angelo Solimini⁷, Cecilia Marques-Toledo⁸, André B.B. Wilke⁹, Roberto Rosà^{10,11}, Giovanni Marini^{4,10}, Daniele Arnoldi^{4,10}, Ana Pastore y Piontti¹², Andrea Pugliese², Gioia Capelli⁶, Alessandra della Torre⁷, Mauro M Teixeira⁸, John C. Beier¹³, Annapaola Rizzoli^{4,10}, Alessandro Vespignani¹², Marco Ajelli⁹, Stefano Merler^{1,4}, Piero Poletti^{1,4}

1 Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy 2 Department of Mathematics, University of Trento, Trento, Italy

- 3 Digital Industry Center, Bruno Kessler Foundation, Trento, Italy
- 4 Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy

⁵ Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy

6 Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy ⁷ Department of Public Health and Infectious Diseases, Sapienza university of Rome,¹³ Department of Public Health Sciences, Miller School of Medicine, Rome, Italy

⁸ Department of Biochemistry and Immunology, Federal University of Minas Gerais,

9 Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA

¹⁰ Research and Innovation Centre, Fondazione Edmund Mach, Trento. **Italy**

¹¹ Center Agriculture Food Environment, University of Trento, Trento, Italy ¹² Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA

University of Miami, Miami, FL, USA

BelChimate Sensitive Vector Dynamics Modelling Workshop, Bologna, September 19-20

Introduction

MOST OF APPROACHES

1. Focus on local epidemiological or entomological data

2. Estimate the mosquito habitat suitability, which do not provide quantitative estimates of transmission risks/seasonality

ASSUMPTIONS:

1. the local climate suitability determines the mosquito relative

density
2. increase in the mosquito abundance as a consequence of persisting favorable temperature conditions over a certain period

3 4 Absolute abundance of female adults per ha using the flight range and the capture rate 2 **Transmissi** on potential of CHIKV, DENV, and Zika Mosquito captures as a function of the mean temperature over a time window

Zardini et al. Lancet Planetary

the method Climate suitability

Logistic regression model

• **Model:**

$$
\sigma_i = \frac{1}{1 + e^{-\left(b_o + \sum_{j=1}^n b_j Y_{i,j}\right)}}
$$

• **Data:**

Presence-absence records for 1,892 US counties (Monaghan et al. 2019) and 4,372

Climate suitability

Seasonal population dynamics

Temperature modulation function

$$
C(\boldsymbol{d}) = \frac{L}{1 + e^{-k(\overline{T}(\boldsymbol{d}, \boldsymbol{w}) - \overline{T}_0)}}
$$

where

$$
\widetilde{\bm{T}}\left(\bm{d}\;,\bm{w}\right)\!=\!\frac{1}{\bm{w}}\sum_{\bm{j}=\bm{d}-\bm{w}+\bm{1}}^{\bm{d}}\bm{T}\left(\bm{j}\right)
$$

MCMC calibration based on capture data of female adults collected in 115 locations of Italy, US, Brazil

- : site and trap independent
	- : trap dependent
	- : estimated climate suitability

Absolute abundance: flight range and trap specific capture rate rate of the state of the control of the cont

ILLUSTRATIVE FITS

Transmission potential reproduction number

Average number of mosquitoes infected by a single infectious human host in a population of fully susceptible mosquitoes and hosts:

$$
R_{HV} = \chi_V \beta \phi \frac{1}{\gamma} \frac{N_V}{N_H} \frac{\omega_V}{\omega_V + \mu_V}
$$

Average number of hosts infected by a single infectious mosquito introduced in a population of fully susceptible mosquitoes and hosts:
 $T \cdot T = C$

squitoes and hosts:

$$
B = B \oplus \frac{\mathcal{X}I}{\mathcal{U}V}
$$

Reproduction number:

$$
\boldsymbol{R}_{\text{o}} = \boldsymbol{R}_{\boldsymbol{H}} \boldsymbol{\nu} \boldsymbol{R}_{\text{Weilb}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol{\nu}_{\text{H}} \boldsymbol{\mu}_{\text{H}} \boldsymbol
$$

Model vs entomological evidence

Historical records for Ae. aegypti [1900-1955]

Model vs epidemiological evidence

Modeling exercise

- Standardized the abundance of Ae. albopictus with respect to the maximum value predicted in Bologna
- Number of consecutive days associated with a standardized mosquito abundance

Conclusions

- Innovative method to estimate the overall abundance of mosquitoes over time, based on freely available eco-climatic data
- Provide estimates in areas where entomological data are scarce or unavailable
- High temporal and spatial resolution

LIMITATIONS:

- Limited entomological data available for South America and Europe
- Climate suitability of the Americas calibrated against data aggregated at county level
- Dependence on estimates of capture rate
- Not account for progressive expansion and competition of mosquito species, and control measures
- Human mobility, level of immunity, case importations

Thank you for your attention

contact: zardini@fbk.eu

A SPECIAL THANK TO: **Francesco Menegale, Piero Poletti, Stefano Merler**

Climate suitability

Environmental mask suitability

Climate suitability

Logistic regression model

• **Model:**

$$
\sigma_i = \frac{1}{1 + e^{-\left(b_o + \sum_{j=1}^n b_j Y_{i,j}\right)}}
$$

• **Data:**

Presence-absence records for 1,892 US counties (Monaghan et al. 2019) and 4,372 European locations (ECDC)

127 time series

173 time series

$0.1 - 1$ $0.1 - 2$ $0.2 - 3$ 0.3 R₀

transmission potential duration epidemic risk

Number of consecutive days associated with an