Modeling the spatiotemporal abundance of Aedes species and the risk of arboviral infection in **Europe and the Americas**

Agnese Zardini¹

Francesco Menegale^{1,2}, Andrea Gobbi³, Mattia Manica^{1,4}, Giorgio Guzzetta^{1,4}, Valeria d'Andrea¹, Valentina Marziano¹, Filippo Trentini^{1,5}, Fabrizio Montarsi⁶, Beniamino Caputo⁷, Angelo Solimini⁷, Cecilia Marques-Toledo⁸, André B.B. Wilke⁹, Roberto Rosà^{10,11}, Giovanni Marini^{4,10}, Daniele Arnoldi^{4,10}, Ana Pastore y Piontti¹², Andrea Pugliese², Gioia Capelli⁶, Alessandra della Torre⁷, Mauro M Teixeira⁸, John C. Beier¹³, Annapaola Rizzoli^{4,10}, Alessandro Vespignani¹², Marco Ajelli⁹, Stefano Merler^{1,4}, Piero Poletti^{1,4}

- ¹ Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
- ² Department of Mathematics, University of Trento, Trento, Italy
- ³ Digital Industry Center, Bruno Kessler Foundation, Trento, Italy
- ⁴ Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
- ⁵ Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy
- ⁶ Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy ⁷ Department of Public Health and Infectious Diseases, Sapienza university of Rome,¹³ Department of Public Health Sciences, Miller School of Medicine, Rome, Italy

- ⁹ Department of Epidemiology and Biostatistics, Indiana University School
- ¹⁰ Research and Innovation Centre, Fondazione Edmund Mach, Trento,
- ¹¹ Center Agriculture Food Environment, University of Trento, Trento, Italy ¹² Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
- University of Miami, Miami, FL, USA

* Department of Biochemistry and Immunology, Federal University of Minas Gerais, Bel Chimaterin Sensitive: Vector Dynamics Modelling Workshop, Bologna, September 19-20

Introduction

MOST OF APPROACHES

 Focus on local epidemiological or entomological data

2. Estimate the mosquito habitat suitability, which do not provide quantitative estimates of transmission risks/seasonality

ASSUMPTIONS:

1. the local climate suitability determines the mosquito relative density

density 2. increase in the mosquito abundance as a consequence of persisting favorable temperature conditions over a certain period

4 Transmissi on potential of CHIKV, DENV, and Absolute 3 Zika abundance of female adults per ha using the flight range and the capture rate Mosquito captures as a function of the to mean the temperature over time а for window

Zardini et al. Lancet Planetary

Logistic regression model

• Model:

$$\boldsymbol{\sigma}_{i} = \frac{1}{1 + e^{-\left(\boldsymbol{b}_{o} + \sum_{j=1}^{n} \boldsymbol{b}_{j} \boldsymbol{Y}_{i, j}\right)}}$$

• Data:

Presence-absence records for 1,892 US counties (Monaghan et al. 2019) and 4,372

Paramet er	Description	Ae. aegypti		Ae. albopictus (Americas)		Ae. albopictus (Europe)	
	Description	Estimate	p- value	Estimate	p-value	Estimate	p-value
	Intercept	- 0.331319 2	0.8735	-10.204877	0.003	- 17.45971	<0.001
	Coeff. annual mean temperature	0.640627 7	<0.00 1	0.876233	<0.001	0.238323 3	<0.001
Enviro	Coeff. maximum temperature of the nmenta /hrmanskhsuitabil	- 0.247313 1 1 2	0.001	-0.213569	0.126	0.537462 6	<0.001
Annual	mean precipitationpet lastopf	- 0.001876 3	<0.00 1 C	squitoes su omplete ² th	urvive lo e gonot	rophic cy	gh to 'cfe ^{.001}

Seasonal population dynamics

Temperature modulation function

$$\boldsymbol{C}(\boldsymbol{d}) = \frac{\boldsymbol{L}}{\boldsymbol{1 + e}^{-\kappa(\widetilde{\boldsymbol{T}}(\boldsymbol{d},\boldsymbol{w}) - \boldsymbol{T}_{o})}}$$

where

$$\widetilde{T}(d, w) = \frac{1}{w} \sum_{j=d-w+1}^{d} T(j)$$

MCMC calibration based on capture data of female adults collected in 115 locations of Italy, US, Brazil

- : site and trap independent
 - : trap dependent
 - : estimated climate suitability

Absolute abundance: flight range and trap specific

ILLUSTRATIVE FITS

Transmission potential reproduction number

Average number of mosquitoes infected by a single infectious human host in a population of fully susceptible mosquitoes and hosts:

$$R_{HV} = \chi_V \beta \phi \frac{1}{\gamma} \frac{N_V}{N_H} \frac{\omega_V}{\omega_V + \mu_V}$$

Average number of hosts infected by a single infectious mosquito introduced in a population of fully susceptible mosquitoes and hosts:

$$R_{VH} = \beta \phi \frac{\chi_{H}}{\mu_{V}}$$

Reproduction number:

Model vs entomological evidence

Historical records for Ae. aegypti [1900-1955]

	ITUE POSILIVE
Ae. albopictus	99%
Ae. aegypti	98%

Model vs epidemiological evidence

Modeling exercise

- Standardized the abundance of Ae. albopictus with respect to the maximum value predicted in Bologna
- Number of consecutive days associated with a standardized mosquito abundance

Conclusions

- Innovative method to estimate the overall abundance of mosquitoes over time, based on freely available eco-climatic data
- Provide estimates in areas where entomological data are scarce or unavailable
- High temporal and spatial resolution

LIMITATIONS:

- Limited entomological data available for South America and Europe
- Climate suitability of the Americas calibrated against data aggregated at county level
- Dependence on estimates of capture rate
- Not account for progressive expansion and competition of mosquito species, and control measures
- Human mobility, level of immunity, case importations

Thank you for your attention

contact: zardini@fbk.eu

A SPECIAL THANK TO: Francesco Menegale, Piero Poletti, Stefano Merler

Environmental mask suitability

Logistic regression model

• Model:

$$\boldsymbol{\sigma}_{i} = \frac{1}{1 + e^{-\left(\boldsymbol{b}_{o} + \sum_{j=1}^{n} \boldsymbol{b}_{j} \boldsymbol{Y}_{i, j}\right)}}$$

• Data:

Presence-absence records for 1,892 US counties (Monaghan et al. 2019) and 4,372 European locations (ECDC)

Parame ter	Description	Ae. aegypti			Ae. albopictus (Americas)			Ae. albopictus (Europe)		
		Estimate	Std. error	p- value	Estimate	Std. error	p- value	Estimate	Std. error	p-value
	Intercept	- 0.331319 2	2.08023 73	0.8735	- 10.20487 7	3.41893 9	0.003	- 17.4597 1	0.8290	<0.001
	Coeff. annual mean temperature	0.640627 7	0.05804 53	<0.00 1	0.876233	0.13063 4	<0.00 1	0.23832 33	0.03409	<0.001
	Coeff. maximum temperature of the warmest month	- 0.247313 2	0.07749 89	0.001	- 0.213569	0.13954 4	0.126	0.53746 26	0.03245	<0.001
		_								

		Threshold 0.5		Thresh	old 0.3	Threshold 0.7		
	Reference	True Positiv e	False Positiv e	True Positiv e	False Positiv e	True Positiv e	False Positiv e	
Ae. albopictus (US)	Monaghan et al. 2019	99%	13%	99%	22%	98%	8%	
<i>Ae.</i> <i>albopictus</i> (Europe)	ECDC	99%	38%	99%	46%	94%	29%	
Ae. aegypti	Monaghan et al. 2019	67%	7%	76%	13%	49%	4%	

127 time series

173 time series

R0 0.1-1 01-2 02-3 >3

transmission potential duration epidemic risk

Number of consecutive days associated with an