
P a u l  H u x l e y
V i r g i n i a  T e c h  ( S t a t i s t i c s )
I m p e r i a l  C o l l e g e  L o n d o n  ( I n f e c t i o u s  D i s e a s e  E p i d e m i o l o g y )

T r a i t - b a s e d  a p p r o a c h e s  t o  u n d e r s t a n d i n g  t h e r m a l  a d a p t a t i o n  i n  a r t h r o p o d s :  
P o t e n t i a l  i m p l i c a t i o n s  f o r  c l i m a t e - d r i v e n  V B D  m o d e l l i n g



VBDs World-Wide: Dengue 
• Causes the greatest human disease burden of any arbovirus
• 10,000 deaths and 100 million symptomatic infections per year in over 125 countries
• Environmental change is expected to shift transmission risk patterns

Guzman & Harris 2014 Lancet



Malaria: The canonical VBD
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VBDs: The big picture

• How can we predict when and where VBD burden will be high?

• How much and what kinds of data do we need to make good quantitative predictions, and at 
what time/spatial scale?

• Can we combine a mechanistic understanding into a ‘tactical’ approach to improve 
extrapolation?



Ecological/Epidemiological Models

Tactical/Phenomenological Strategic/Mechanistic

• Describe patterns without elucidating mechanism

• Prediction

• Statistical models (regressions, etc.)

• Focus on mechanisms

• Explanation or understanding 

• ODEs, PDEs, IBMS/ABMs



Ecological/Epidemiological Models

Tactical/Phenomenological Strategic/Mechanistic

How much data?

Short term Long term

Some Some

more than you have (almost always!)



Why more data?

We have to fit the mechanism from the bottom up and validate from the top down!

• Twice the work, sometimes twice the data (or more) needed.

• Data available for validation or for fitting parameters for the mechanistic models are often not 
suitable for those purposes.

• Models may be primarily suitable for a single scale or purpose (prediction vs understanding)



Tactical/Phenomenological VBD models



Tactical/Phenomenological VBD models

1.#Peak#incidence

2.#Peak#week

3.#Total#cases



Tactical/Phenomenological VBD models

Purely tactical example

• Based on Gaussian process regression

• Only used dengue incidence data

• Predictors derived from casually observed relationships 
(i.e., by looking at the data and identifying some of its characteristics)

• Fully analytic scheme (fast!)

• Heteroskedastic additions for greater flexibility 

It’s a strategy that is simultaneously simple (in its use of data) and very flexible (non-parametrically estimating 
nonlinear relationships).

A GP is just a “big multivariate normal”.

Johnson et al., Ann. App. Stat. 2018



Tactical/Phenomenological VBD models

Forecasting Dengue in San Juan: GP model
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Fig 2. Snapshots of GP forecasts for San Juan corresponding to weeks 0, 16, 24 and 32 in the 2005/2006 season.
Symbols, colors, and plotting lines are the same as in Figure 1.

the potential for a relapse of high incidence, mimicking the observed dynamics of 1998/1999. After
another eight weeks, shown in the final panel, the potential for such a relapse is much diminished.

Towards the end of the season it is typical for the estimated latent x̂·4 value to drift away from
{�1, 0, 1} values that encode x4 in the training data Xn. This is because each season is distinct
from the previous ones, and capturing those distinct dynamics requires the new season to exhibit
di↵erences rather than similarities to the past. Moreover, it is clear from examining Figure 1, or
the transformed versions in Figure A1, that the dynamics are highly nonstationary in that within-
season dynamics do not have the same mean structure from one season to the next. However
our Gaussian correlation structure assumes stationarity (i.e., that the correlation depends only on
distance between the inputs). The introduction of a latent coordinate has recently been proposed as
a remedy for adapting a stationary GP to nonstationary data (Bornn, Shaddick and Zidek, 2012).
Therefore there is a tension in the dual role we are asking x̂·4 to take on: indicating severity (i.e.,
similarly to certain past seasons with similar incidence heights) and nonstationary flexibility (i.e.,
dissimilarity to any previous year, whether by height or otherwise).

3.3. Heteroskedastic enhancements. During the contest period we noticed a relationship be-
tween seasonal severity (i.e., mean weekly incidence) and the dispersion of incidences around their
mean. That is, we noticed that the data were heteroskedastic, even after using the square root (and
log) transformations [Appendix A.1] in an attempt to minimize such relationships. However due to
time constraints imposed by the contest deadlines we were unable to develop the methodological
extensions required address this nuance for our original submitted forecasts. Figure 3 illustrates
this feature of the data by plotting in-sample residuals from the weekly predicted mean fitted values
obtained over the training period for San Juan and Iquitos. These results are on the scale of the
square-root transformed y-values. Observe that residuals for seasons classified as mild (less than
25 weekly cases for San Juan and less than 10 for Iquitos) show the lowest dispersion, whereas
residuals for the highest severity seasons (more than 100 and 25, respectively) show the highest
dispersion. Therefore, even after using the x4 variable to account for dynamics di↵erentiated by
seasonal severity, there is potentially un-accounted-for variation in uncertainty that could adversely
e↵ect our forecasting distributions and the log scores that were used to judge contest participants.

To address this issue in our revised method we introduced an indicator variable based on x4, the

10

Johnson et al., Ann. App. Stat. 2018

Week 0 Week 16 Week 24 Week 32



Tactical/Phenomenological VBD models

Forecasting Dengue in San Juan

Johnson et al., Ann. App. Stat. 2018



Tactical/Phenomenological VBD models

GP Regression

• Fast, Flexible, Data Light
• Can capture uncertainty easily
• Learns from the data as it comes in relatively quickly
• Doesn’t care what the underlying processes are so you 
can’t get them wrong!

Pros

• Context dependent - can’t use a GP (of this type) from 
one city to predict in another
• Can’t be used to learn about impacts of control
• Extrapolation (climate change, invasions….) is 
problematic

Cons

What can you get with a mechanistic model?



Malaria: The canonical VBD
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What is a trait?

A trait is any measurable feature of an individual organism.

• Physical (body mass, wing length, wing morphology, etc.)

• Performance (respiration rate, growth rate, flying speed, etc.)

• Behavioural (feeding preference, foraging strategy, thermoregulatory, etc.)



What is a trait?

A trait is any measurable feature of an individual organism.

• Physical (body mass, wing length, wing morphology, etc.)

• Performance (respiration rate, growth rate, flying speed, etc.)

• Behavioural (feeding preference, foraging strategy, thermoregulatory, etc.)

Why are traits important?



Strategic/Mechanistic VBD models

Infectious bites/host 

Life history

Interaction traits
(find food; search for 
mates; avoid 
predators?)

Individual traits
(physical, behavioural 
performance) 

Vector 
abundance/density

Encounter rate
w/ transmission host

Transmission probability 
(given contact)



Mechanistic VBD models

Expected number of secondary cases arising from an initial case in a naïve population



Many biological rate processes respond to temperature in a predictable way. 

Mechanistic VBD models
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Mechanistic VBD models



Temperature response data for R0 

James Gathany

Aedes albopictus Aedes aegypti

Muhammad Mahdi Karim



Temperature-dependent components of R0(T)

Mordecai et al., PLoS NTD 2017



Bayesian estimate of R0(T)

Mordecai et al., PLoS NTD 2017



Temperature dependence: R0(T) for Dengue/Zika/CHIKV

Mordecai et al., PLoS NTD 2017



Risk mapping using temperature-dependent R0

Mordecai et al., PLoS NTD 2017 Ryan et al., PLoS NTD 2019



Strategic/Mechanistic VBD models

Forecasting Dengue in San Juan

Johnson et al., Ann. App. Stat. 2018



Strategic/Mechanistic VBD models

Pros

• Simple and familiar approach 
• Can include environmental predictors and biological 

knowledge
• Can be implemented in R without too much trouble 
• Can use model selection to tell you what’s important

Complements GP, but slower and needs more data

Cons

• Computationally intensive for predictors
• Non-linear dynamics beholden to unpredictable events 

(extreme temps/precipitation, SOI … )
• Regime changes season-to-season are hard to predict

GLM Regression 



Strategic/Mechanistic VBD models

Combining mechanistic models with tactical approaches should enable us to make better predictions about 
patterns of transmission in the face of climate change, including at intermediate times scales (e.g., 5-10 years).

• Traits - laboratory and field data on vector traits and characteristics linked to 
environmental variables

• Vector dynamics - population measures for vector model validation, and as input into 
mechanistic models

• Human case data

• How do vector traits and behaviours impact transmission?

•Model output as data for comparing methods

BUT …. we need more data!



Most current projections of arbovirus transmission risk are based on idealised trait TPCs  

Mordecai et al., PLoS NTD 2017





Thermal adaption in Aedes mosquitoes

Background

• Most current projections of how climatic warming will affect VBD assume that all populations 
of a given vector species respond similarly to temperature. 

• Variation in environmental temperatures is a selection pressure that can lead to local 
adaptation. If species are made-up of multiple locally adapted populations, assuming a single 
species-level response might lead to inaccurate predictions of future VBD risk.
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Data synthesis



TPC fitting using ...



Pawar and Huxley et al. 2024. Nat. Ecol. Evol.

Analytic rm model



Variation in temperature dependence of Aedes life history traits

Da Re et al., in prep.
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⌧24.996364

Skukuza Kruger National Park South Africa

Aedes aegypti
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