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VBDs World-Wide: Dengue

. Causes the greatest human disease burden of any arbovirus
. 10,000 deaths and 100 million symptomatic infections per year in over 125 countries
. Environmental change is expected to shift transmission risk patterns
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Malaria: The canonical VBD
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VBDs: The big picture

* How can we predict when and where VBD burden will be high?

« How much and what kinds of data do we need to make good quantitative predictions, and at
what time/spatial scale?

* Can we combine a mechanistic understanding into a ‘tactical’ approach to improve
extrapolation?




Ecological/Epidemiological Models

Tactical/Phenomenological Strategic/Mechanistic
e Describe patterns without elucidating mechanism * Focus on mechanisms
* Prediction e Explanation or understanding

» Statistical models (regressions, etc.)  ODEs, PDEs, IBMS/ABMs




Ecological/Epidemiological Models

Tactical/Phenomenological Strategic/Mechanistic

How much data?

Some Some

more than you have (almost always!)

Short term Long term




Why more data?

We have to fit the mechanism from the bottom up and validate from the top down!

* Twice the work, sometimes twice the data (or more) needed.

Data available for validation or for fitting parameters for the mechanistic models are often not
suitable for those purposes.

Models may be primarily suitable for a single scale or purpose (prediction vs understanding)




Tactical/Phenomenological VBD models
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Tactical/Phenomenological VBD models
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Tactical/Phenomenological VBD models

Purely tactical example

* Based on Gaussian process regression
* Only used dengue incidence data

* Predictors derived from casually observed relationships
(i.e., by looking at the data and identifying some of its characteristics)

* Fully analytic scheme (fast!)

* Heteroskedastic additions for greater flexibility

It’s a strategy that is simultaneously simple (in its use of data) and very flexible (non-parametrically estimating
nonlinear relationships).

A GP is just a “big multivariate normal”.

Johnson et al., Ann. App. Stat. 2018



Tactical/Phenomenological VBD models
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Tactical/Phenomenological VBD models

Forecasting Dengue in San Juan
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Tactical/Phenomenological VBD models

GP Regression

Pros Cons
* Fast, Flexible, Data Light * Context dependent - can’t use a GP (of this type) from
* Can capture uncertainty easily one city to predict in another
* Learns from the data as it comes in relatively quickly e Can’t be used to learn about impacts of control
* Doesn’t care what the underlying processes are so you * Extrapolation (climate change, invasions....) is
can’t get them wrong! problematic

What can you get with a mechanistic model?



Malaria: The canonical VBD
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What is a trait?

A trait is any measurable feature of an individual organism.
* Physical (body mass, wing length, wing morphology, etc.)
* Performance (respiration rate, growth rate, flying speed, etc.)

* Behavioural (feeding preference, foraging strategy, thermoregulatory, etc.)




What is a trait?

A trait is any measurable feature of an individual organism.
* Physical (body mass, wing length, wing morphology, etc.)
* Performance (respiration rate, growth rate, flying speed, etc.)

* Behavioural (feeding preference, foraging strategy, thermoregulatory, etc.)

Why are traits important?




Strategic/Mechanistic VBD models

Infectious bites/host

Vector Encounter rate Transmission probability
abundance/density w/ transmission host (given contact)

1 A
T

Interaction traits «—, Individual traits

(find food; search for (physical, behavioural
mates; avoid performance)
predators?)




Mechanistic VBD models

Expected number of secondary cases arising from an initial case in a naive population

M -  mosquito population
M a2 bce_ﬂE IP a -  biting rate (1/gonotrophic cycle length)
RO p— bc -  vector competence
N r Iu EIP - parasite extrinsic incubation period
- mosquito mortality rate
N - human population

r - recovery rate




Mechanistic VBD models

Many biological rate processes respond to temperature in a predictable way.
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Mechanistic VBD models

Fit physiological Calculate Ro(T) Validate with field
responses to data based on fitted curves

symmetric & asymmetric
(linear for comparison)
fit with Bayesian method

field transmission -
observed incidence




Temperature response data for R,

M - mosquito population
_ a -  biting rate (1/gonotrophic cycle length)
Ry — M a*bee wBLP bc -  vector competence
0 — Nr EIP - parasite extrinsic incubation period
P - mosquito mortality rate
N - human population
T - recovery rate
EFD X pga x MDR
M = >
v

Aedes albopictus Aedes aegypti

James Gathany Muhammad Mahdi Karim




Temperature-dependent components of R,(T)
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Bayesian estimate of R,(T)
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Temperature dependence: R,(T) for Dengue/Zika/CHIKV
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Risk mapping using temperature-dependent R,

A. Aedes albopictus B. Aedes aegypti
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Strategic/Mechanistic VBD models

Forecasting Dengue in San Juan
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Strategic/Mechanistic VBD models

GLM Regression

Pros Cons

* Simple and familiar approach  Computationally intensive for predictors

* Caninclude environmental predictors and biological * Non-linear dynamics beholden to unpredictable events
knowledge (extreme temps/precipitation, SOI ...)

* Can be implemented in R without too much trouble * Regime changes season-to-season are hard to predict

e Can use model selection to tell you what’s important

Complements GP, but slower and needs more data




Strategic/Mechanistic VBD models

Combining mechanistic models with tactical approaches should enable us to make better predictions about
patterns of transmission in the face of climate change, including at intermediate times scales (e.g., 5-10 years).

BUT .... we need more data!

* Traits - laboratory and field data on vector traits and characteristics linked to
environmental variables

 Vector dynamics - population measures for vector model validation, and as input into
mechanistic models

* Human case data
* How do vector traits and behaviours impact transmission?

*Model output as data for comparing methods




Most current projections of arbovirus transmission risk are based on idealised trait TPCs
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_ EFDXpEA X MDR

M "

mosquito population
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vector competence

parasite extrinsic incubation period
mosquito mortality rate

human population

recovery rate




Thermal adaption in Aedes mosquitoes

Background

. Most current projections of how climatic warming will affect VBD assume that all populations
of a given vector species respond similarly to temperature.

. Variation in environmental temperatures is a selection pressure that can lead to local
adaptation. If species are made-up of multiple locally adapted populations, assuming a single
species-level response might lead to inaccurate predictions of future VBD risk.
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Data synthesis

EFFECT OF TEMPERATURE ON INTRINSIC RATES

63

Table 1. Proportion of ovipositing females, duration of preoviposition and oviposition
periods, longevity, and fecundity of Tetranychus mcdanieli at different temperatures

Temperature
°C)

14
16
20
24
28
30
32
34
36

na

8
30
41
32
39
21
47
35
15

Ovipositing
females

(%)

87.5
83.3
90.2
97.0
100
100
91.5
100
100

Preoviposition
periodb
(days)

40+£19
3.7+ 0.6
22+£0.5
1.2+0.3
1.2+04
1.0£0.3
1.1 £0.5
0.8 £0.9
0.8+0.2

Oviposition
pe:riodb
(days)

29.1 £ 125
28.5 £ 129
255+ 15.1
21.9£9.7
15.1£7.5
6.7 £ 3.6
82+54
4.8 £2.7
54+£2.0

4Number of females that survived to the adult stage.
bValues are means =+ standard deviation.

Female
longevityb
(days)

36.2 £ 14.2
35.0 £13.7
28.8 £ 159
24.0 £10.0
17.0 £ 8.0
7.7£3.7
9.6 5.6
6.1 £34
6.5+2.4

Female

fecundityb

(eggs)

43.8 £27.3
575 £37.2
91.7 £ 68.9
151.5 £70.9
129.8 £ 58.8
79.2 £47.2
52.0+£453
30.2 £ 18.0
12.7£23




TPC fitting using ...
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Analytic r,, model

Derivative of
temperature-dependence

20
Temperature (°C)

Parameter Units Description

day~1 Maximal population growth rate
days Egg to adult development time
eggs x (female x day)~! Maximum fecundity rate
day—! Fecundity loss rate
-1 Adult mortality rate
-1 Mortality rate averaged across juvenile stages

Pawar and Huxley et al. 2024. Nat. Ecol. Evol.




Variation in temperature dependence of Aedes life history traits

Da Re et al., in prep.




Evidence of thermal adaption of population fitness in Aedes

Aedes aegypti Aedes albopictus

Boqueirao Paraiba Brazil
Campina Grande Paraiba Brazil
Fort Myers Florida == Panyu Guangzhou China
Marilia Brazil == Saint—Pierre Reunion Island
Monterey Mexico

Remigio Paraiba Brazil

20 30
Temperature,’C Temperature,’C

Da Re et al., in prep.
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@ VecTraits Explorer

Search by phrase...

Select a column Select an operator Enter a search term...

Click any row in the table to view its details page or click the checkbox beside any number
of rows and then click the download button to download their data. ks sl e 572 records returned

a A
Select # Dataset ID Original Trait Name Variables Interactor1Stage Interactor1Genus Interactor1Species Interactor2Genus Interactor2Species Citation

development time Interactor1Temp juvenile Acyrthosiphon pisum Ahn et al. 2(
fecundity Interactor1Temp adult Acyrthosiphon pisum Ahn et al. 2(
longevity Interactor1Temp adult Acyrthosiphon pisum Ahn et al. 2(
reproductive period Interactor1Temp adult Acyrthosiphon pisum Ahn et al. 2(
survival Interactor1Temp juvenile (notinc eg... Acyrthosiphon pisum Ahn et al. 2(
mortality rate Interactor1Temp adult Aedes albopictus Alto and Jul
development time Interactor1Temp juvenile (inc egg st... Paracoccus marginatus Amarasekar
fecundity Interactor1Temp adult Paracoccus marginatus Amarasekar
longevity Interactor1Temp adult Paracoccus marginatus Amarasekar
ovipositional period Interactor1Temp adult Paracoccus marginatus Amarasekar
survival Interactor1Temp juvenile (inc egg st... Paracoccus marginatus Amarasekar
development time Interactor1Temp egg Sitona lepidus Arbab and N
survival Interactor1Temp egg Sitona lepidus Arbab and N
survival Interactor1Temp, LocationText juvenile Bemisia tabaci Aregbesola
development time Interactor1Temp juvenile Bemisia tabaci Aregbesola

longevity Interactor1Temp adult Bemisia tabaci Aregbesola
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