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The ability of a single genotype to produce 

multiple phenotypes when exposed to 

different environmental conditions

Definition - Phenotypic plasticity 
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Accounting for density-
dependence

Traits important for disease 
transmission exhibit delayed 
density-dependence

We consider the effect of 
developmental plasticity on 
disease dynamics
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system of delay-differential 
equations

Adult population structured by 
infection status and wing-
length

Use historic experience of 
larval competition to 
determine the wing-length of 
emerging adults
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Stage-phenotypically 
structured delay-differential 
equations

Input environmental variables

Output population & disease 
dynamics

No backfitting
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Validate disease dynamics 
by comparing predictions to 
historic dengue outbreaks

We select plausible 
introduction scenarios for 
dengue cases based on case 
reports

These are often uncertain
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The wing-length distribution of 
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mosquitoes are different

Large mosquitoes drive 
increase in dengue case 
numbers before peak infection

Phenotypic plasticity alters 
disease dynamics

Trait structure alters disease 
dynamics
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CONCLUSIONS

We have produced a globally 
validated model of mosquito 
and disease dynamics

This can be used to produce 
accurate predictions of 
relative disease risk

Mosquito trait variation in 
response to developmental 
environmental experience 
alters disease dynamics
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THE MODEL

Eγ (t) – Active eggs

ED (t) – Diapausing eggs

EQ (t) – Quiescent eggs

L(t) – Larvae

Aj (t) – Adults in environmental 
class j

R – Recruitment terms

M – Maturation terms

P – Survival

δ – Mortality rate

τ – Stage duration
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TRANSITION FUNCTIONS



RT
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